
September 2012 1

Alcatel-Lucent nmake Eclipse Plugin
September 2012

Table of Contents
1. Overview ... 1

1.1. Alcatel-Lucent nmake Eclipse CDT plugin .. 1
1.2. About This Document ... 2

2. Getting Started ... 2
2.1. Installing Eclipse .. 2
2.2. Installing the Plugin .. 2

3. Tasks .. 3
3.1. Project Build Setup ... 3
3.2. Eclipse Project Setup .. 3
3.3. Eclipse Project Builds ... 4
3.4. Custom Make targets .. 6

4. Reference .. 7
4.1. nmake Build Definitions .. 7
4.2. Error Parsers ... 8

5. Examples Guide ... 9
5.1. Overview .. 9
5.2. Description of Example ... 9
5.3. Creating the Example Project .. 11
5.4. Building the Example Project .. 13
5.5. Notes on the Example Project ... 14

6. Notes .. 14
7. Tips and Tricks ... 14

7.1. General Tips .. 14
7.2. Troubleshooting .. 15

8. What's New ... 15
9. Legal .. 16

List of Figures

1. CDT project creation wizard—project type and toolchain selection. .. 4
2. Console build log for a project build. ... 5
3. Manage build configurations dialog. ... 6
4. Custom make target creation dialog. ... 7
5. Custom make targets view. ... 7
6. CDT project creation wizard—template project type and toolchain selection. 12
7. CDT project creation wizard—template properties dialog. ... 13

1. Overview

1.1. Alcatel-Lucent nmake Eclipse CDT plugin
The Alcatel-Lucent nmake Eclipse CDT plugin supports use of Alcatel-Lucent nmake with Eclipse™
CDT. The plugin currently provides managed build definitions that configure CDT for nmake builds
for Makefile-based projects. The definitions leverage nmake “common actions” to pre-populate builder

Alcatel-Lucent nmake Eclipse Plugin Getting Started

September 2012 2

options with targets useful across a broad range of nmake-based projects. Out of the box, the plugin
provides an nmake specific CDT Project Type and CDT build configurations for Debug and Release builds
on several platforms. In common cases, the build definitions substantially reduce the need to manually
specify build options for nmake based builds.

Other features provided by the plugin include:

• A set of Eclipse Error Parsers which recognize nmake messages in the build output, classify their
severity, and enable Eclipse to use them to for various purposes such as populating the problems view
and creating problem markers.

• C and C++ sample projects packaged as Eclipse CDT project templates. For the sample projects
provided, the need for manual option setup is eliminated.

The procedures described here were developed for Eclipse 4.2, CDT 8.1, and nmake 14 on Linux® and
Oracle® Solaris and support the gcc C and C++ tool chains. See the nmake Eclipse plugin download
page [http://www.bell-labs.com/project/nmake/download/eclipse/] for up-to-date version compatibility
information.

1.2. About This Document
The following typographical styles are used in the document. These items are derived from the element
classification scheme used in DocBook [http://docbook.org/]:
Style Used For
command The name of a command
envvar An environment variable
error message An error message
error type The type of an error
filename The name of a file or directory
GUI button The text on a button in a GUI
GUI icon Graphic and/or text appearing as an icon in a GUI
GUI label The text of a label in a GUI
GUI menu The name of a menu in a GUI
GUI menu item The name of a menu item in a GUI
GUI sub menu The name of a submenu in a GUI
output Program output
replaceable Content that may be replaced by the user
user input User input

2. Getting Started

2.1. Installing Eclipse
You can download the latest Eclipse from the Eclipse download page [http://www.eclipse.org/downloads/
]. The C/C++ development plugin (CDT) is required; you can start from the Eclipse Classic package and
then install the CDT on top of it; or start with the Eclipse IDE for C/C++ Developers package which has
CDT already included.

2.2. Installing the Plugin
You can install the nmake CDT plugin from the nmake Eclipse update site. See the nmake Eclipse support
page [http://www.bell-labs.com/project/nmake/manual/eclipsesupport.html] for the latest information on
installing the plugin and for the location of the update site.

http://www.bell-labs.com/project/nmake/download/eclipse/
http://www.bell-labs.com/project/nmake/download/eclipse/
http://www.bell-labs.com/project/nmake/download/eclipse/
http://docbook.org/
http://docbook.org/
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.bell-labs.com/project/nmake/manual/eclipsesupport.html
http://www.bell-labs.com/project/nmake/manual/eclipsesupport.html
http://www.bell-labs.com/project/nmake/manual/eclipsesupport.html

Alcatel-Lucent nmake Eclipse Plugin Tasks

September 2012 3

1. Select Help > Install New Software....

2. Click Add....

3. In the Add Repository dialog, enter Alcatel-Lucent nmake Update Site in the Name
field. Enter http://www.bell-labs.com/project/nmake/download/eclipse in the
Location field. Click OK.

4. Back in the Install screen, select Alcatel-Lucent nmake Update Site from the drop down menu for the
Work with field. An expandable list of available Alcatel-Lucent nmake plugins with version numbers
should appear in the central display area. Expand the list and / or change display filter options at the
bottom of the screen to display the Alcatel-Lucent nmake plugin entries.

5. Check the check box corresponding to the desired version of the Alcatel-Lucent nmake plugin.

6. Click Next. Click through the following screens to complete installation.

The nmake Alcatel-Lucent CDT support feature should now be installed.

3. Tasks

3.1. Project Build Setup

First verify that your project successfully builds standalone, outside of Eclipse. This will involve:

• cd to your project node root directory, say proot. Typically, proot will be the directory containing
your src, bin, and lib. Since Eclipse defaults to building in the top level directory, it is easiest
if proot is also the top level build directory, containing the top level Makefile. See Section 5,
“Examples Guide” for a sample project organization.

• Set up your build environment: put nmake on your PATH. Make sure that the project node root is first
on your VPATH. For a single node build, set VPATH to proot.

• Run a top level project build, typically via nmake install. Verify the build completes successfully. Clean
up, typically via nmake recurse clobber.install clobber.

We recommend setting recurse_begin_message = gnu in the project global Makefile
to configure nmake to output GNU make style recursion messages. This allows the Eclipse CDT
error parser to track the current directory in recursive builds. See Section 5, “Examples Guide”
for an example. By default, the build definitions provided in the nmake CDT plugin also set
recurse_begin_message=gnu on the nmake command line. (The recurse_begin_message
= gnu feature was introduced in nmake alu3.9.)

3.2. Eclipse Project Setup

Set up your environment for top level project builds as described above, then start Eclipse. If a workspace
selection dialog pops up before the main Eclipse window opens, keeping the default workspace location is
usually fine. (You might want to use a separate workspace location for each different version of Eclipse you
want to be able to run.) Turn off automatic project builds by deselecting Project > Build Automatically.
Create a new CDT project using File > New > Project, select C Project or C++ Project and click Next.
Enter your Project name. Uncheck Use default location and set the Location field to the existing project
root location proot. Select nmake Makefile Project - GCC under Project type. nmake toolchains

Alcatel-Lucent nmake Eclipse Plugin Tasks

September 2012 4

with names similar to nmake Makefile - Linux gcc/debug and nmake Makefile - Linux gcc/release
should then appear in the column labeled Toolchain. The toolchains are platform specific—by default,
only toolchains supported on the current platform are displayed. These project types and toolchains are
specific to nmake and were contributed by the nmake CDT plugin. As shown in the following screenshot,
select both toolchains (select one and then include the other using shift-click). Click Finish. Answer Yes
if the project setup wizard offers to open the C/C++ perspective.

Figure 1. CDT project creation wizard—project type and toolchain selection.

3.3. Eclipse Project Builds

Select the project in the Project Explorer view, then build using Project > Build Project. This launches
a top-level project build for the active configuration using nmake install. Build log output displays in
the console view as seen below, in this case showing a debug build. Any errors and warnings from the C
compiler and nmake are highlighted in the console build log. Problem markers are also created (viewable
in the Problems view) that, if possible, map back back to the source file location where the error occurred.

Alcatel-Lucent nmake Eclipse Plugin Tasks

September 2012 5

Figure 2. Console build log for a project build.

You can clean up by doing Project > Clean..., which runs the command nmake recurse clobber
clobber.install. Uncheck Start a build immediately unless you want to rebuild immediately after
clobbering.

The above procedure generates objects compiled for debugging. To generate objects compiled for release,
change the active configuration by selecting the project in the Project Explorer, then select Project >
Build Configurations > Set Active > nmake Makefile - Linux gcc/release (or the equivalent for your
platform), and rebuild the project. Alternatvely, select Manage... to bring up the Manage Configurations
dialog and select the desired build configuration as shown in the following screenshot:

Alcatel-Lucent nmake Eclipse Plugin Tasks

September 2012 6

Figure 3. Manage build configurations dialog.

3.4. Custom Make targets

In addition to the project level build definitions, CDT allows you to define custom make targets that may
appear at any level in the build hierarchy. Custom make targets may be defined by right clicking on any
Makefile in your build hierarchy as displayed in the Project Explorer view to bring up the context menu.
Select Make Targets, then Create... to bring up the Create Make Target dialog. With one exception,
standard CDT procedures for defining custom make targets work for nmake. The exception is the setting
for the Build Command field of the Create Make target dialog. When some versions of CDT run the
specified build command, they do not set environment variable PWD appropriately for targets not at project
root. This leads to incorrect values for nmake variables such as VROOT. A workaround is to execute
nmake through a simple shell wrapper script. A sample script is shown in Example 1, “Sample nmake
shell wrapper script”. In addition to wrapping nmake, the displayed script filters out unwanted compiler
warnings.

Example 1. Sample nmake shell wrapper script

(
 set -x
 nmake $*
) 2>&1 | grep -v 'please use -iquote instead'
echo end $0 $*

To use the script, place the it in a file called nmk in a directory on your PATH and use ksh nmk instead
of nmake in the Build Command field when creating a custom make target:

Alcatel-Lucent nmake Eclipse Plugin Reference

September 2012 7

Figure 4. Custom make target creation dialog.

Custom make targets display in the Make Targets view:

Figure 5. Custom make targets view.

Double click on the target icon to build the target, or select the target and click the target toolbar icon.

4. Reference

4.1. nmake Build Definitions
The build definitions component of the nmake CDT plugin provides CDT build model element definitions
that configure Eclipse CDT for nmake Makefile based builds. The definitions provide an nmake-specific
project type called nmake Makefile Project - gcc containing 2 nmake-specific build
configurations, called nmake Makefile - Linux gcc/debug and nmake Makefile - Linux
gcc/release (or the equivalent for your platform). Each configuration provides a toolchain definition

Alcatel-Lucent nmake Eclipse Plugin Reference

September 2012 8

specialized for its purpose—debug or release build. Each toolchain provides a Builder element as well
as individual tools including a preprocessor, compiler, assembler, and linker. The Builder definitions
specify nmake arguments appropriate for debug and release builds, respectively. The tool definitions
essentially serve as containers for information needed to adjust error parser, binary parser, and scanner
discovery profile settings needed to correctly set up error parsers, paths and symbols. These settings allow
the CDT indexer to properly parse input to set up the internal model of the code under development. The
tool definitions all inherit from platform base tool definitions. This approach maximizes reuse of platform
definitions and makes the system more robust to toolchain definition changes in new releases of CDT.

CDT does not support option enablement for builders. This forces definition of separate toolchains for
each configuration. However, the toolchain definitions were able to factor out common nmake Builder
definitions using inheritance and derive debug/release versions from those. This allows common nmake
Builder setting definitions to be factored out in one place, and allows the definitions to automatically
acquire updated definitions in new platform releases.

When the plugin is installed, the nmake build definitions extend the CDT build model and appear in the
CDT GUI as options in the project setup wizard and in the CDT properties view. Selection of these elements
configures the CDT project with build model elements specialized for nmake.

The provided build elements and definitions leverage nmake baserules conventions including standardized
variables and common actions. For examples, project level builds are performed using install and
cleans are performed using recurse clobber.install clobber. Since nmake based projects
inherit these rules “for free”, these canned definitions should work for the majority of nmake based projects.
However, the build definitions just provide initial default settings, project-specific customization is easily
performed using the CDT GUI.

The definitions add recurse_begin_message=gnu to the nmake command line. This configures
nmake to output recursion messages compatible with existing CDT make output parsers. We recommend
setting recurse_begin_message=gnu in the project global Makefile. Setting it on the command
line provides additional assurance that this parameter gets appropriately set.

Note that it was not possible to set the Build Location parameter in the build definitions. Since the
build location defaults to the top level project directory, it is easiest to run project builds from that location.
Section 5, “Examples Guide” includes a top level Makefile that simply recurses to the src directory
for the actual build. Alternatively, the build location is configurable through the CDT GUI.

4.2. Error Parsers
This feature implements nmake specific Eclipse error parsers for Eclipse CDT. These recognize diagnostic
messages generated by nmake in the build output and create an Eclipse “problem marker” for each message
found. Each problem marker has a description, creation time, severity, file name, file path, and line
number. Severity can be one of Error, Warning, Info, or Ignore. File name, path, line number, and
description can be derived from the message text.

Problem markers are displayed in the Eclipse “Problems View”, where problem severity is indicated by
an icon, and the view can be sorted and filtered by various criteria. Problem markers associated with a
file / line number are displayed in the left margin of editors with the right margin displaying an overview
of all problems in the file. Matching lines in the console build log are highlighted as indicating a problem.
Also, files in the Project Explorer are marked with an error icon if they contain 1 or more problems, and
folders containing files with problems are also marked, all the way up to the project root. Clicking on a
problem in the problem view or a highlighted line in the console build log brings up an editor positioned
at the problem location.

The provided error parsers classify nmake error dianostic messages into 5 types and provide a recognizer
for each type. A typical diagnostic message looks like

Alcatel-Lucent nmake Eclipse Plugin Examples Guide

September 2012 9

make: "Makefile", line 17: warning: file does not end with newline

This message would be recognized by the nmake error parsers as a type 1 diagnostic, with file set to
Makefile, line set to 17, and severity set to Warning. Type 2 diagnostics are similar to type 1 but
indicate an error, types 3 and 4 indicate warnings and errors, respectively, with file and line unspecified.
Type 5 diagnostics indicate are generated by the nmake license manager. Diagnostics without a specified
file / line number are associated with the project as a whole rather than on a specific resource within the
project.

In certain cases, error and warning diagnostics do not indicate the correct file and line number. Specifically,
run time nmake messages orginating when inside a .MAKE block may provide the target name in the
file position, and the line number of the block disregarding commands and white space. These cases are
currently treated like a message without a file name / line number (the CDT error parser framework treats
the errors as such when the provided file name does not correspond to an existing file).

In addition to defining nmake specific error parsers, the nmake specific build definitions (see Section 4.1,
“nmake Build Definitions”) have been modified so that the nmake error parser is automatically enabled
when the nmake build definitions are selected. The CDT pushd/popd current directory detector is also
prepended to the list of error parsers in the build definition. This enables interpretation of GNU style
recurse messages, allowing error markers created from problems in recursive builds to be associated with
files in the correct project subdirectory (nmake can be configured to output GNU style recurse messages
by setting recurse_begin_message=gnu). The gmake error parser is also added in case somewhere
along the line a gmake or make style error message needs to be interpreted in an nmake based build.

5. Examples Guide

5.1. Overview
This section describes an example nmake C Makefile project delivered with the nmake CDT plugin. The
example is packaged as a CDT project template, simplifying example installation and setup. The example
project has several purposes:

• It provides a working example showing interoperability of Eclipse with nmake.

• Since it is packaged as a CDT template, it provides a simplified procedure for creating a new nmake-
based Eclipse CDT project. You can customize this new project for your own needs.

• It demonstrates how to go about building a typical existing multi-level nmake Makefile-based project
in Eclipse CDT.

• It also provides an example of a recommended approach for organizing a multiple directory nmake
project that builds several commands and libraries.

You may assign a name of your choice to the example project during project creation. The following
descriptions assume that the project name is hw (for “Hello World”).

An nmake C++ Makefile project template is also provided in the nmake CDT plugin. Use of the C++
project template is similar to that of the C project template.

5.2. Description of Example
The nmake C project template provides a simple but realistic project example. The project builds 2
commands and 1 library, with the source for each located within its own sub-directory:

Alcatel-Lucent nmake Eclipse Plugin Examples Guide

September 2012 10

hw/
 Makefile
 src/
 Makefile
 global.mk
 cmd/
 Makefile
 hw/
 Makefile
 hw.c
 a.c
 b.c
 b.h
 hw2/
 Makefile
 hw2.c
 a.c
 lib/
 Makefile
 hw/
 Makefile
 lb.c
 la.c
 hw.h
 bin/
 include/
 lib/

This project is representative in that it demonstrates command and library builds, recursive makes,
dependencies on installed headers/libraries, use of project level global Makefiles, installs, and clobbers/
cleans. The example has characteristics of larger projects and the structure is scalable. It can support
complex requirements such as separation of architecture-dependent generated targets (for example, it could
easily generate Solaris and Linux objects from the same source and cleanly separate the generated objects
through viewpathing.) As shown below, this project structure leads to simple declarative Makefiles that
provide full featured build functionality.

hw is the project root (in nmake terminology, the viewpath node root) containing the src, bin, include,
and lib directories. src is the root of the source tree; generated executables and libraries are built locally
and installed under bin, include, and lib. global.mk is the project global Makefile and is included
in all project Makefiles. Following are contents of selected Makefiles.

hw/src/global.mk:

 /* generate GNU style make recurse messages */
 recurse_begin_message = gnu

 /* install build products in build node root directory */
 INSTALLROOT = $(ProjDirPath)

 /* example project-wide header directory */
 .SOURCE.h : $(INCLUDEDIR)

 /* example project-wide library directory */
 .SOURCE.a : $(LIBDIR)

hw/src/Makefile:

 include ../src/global.mk

 :MAKE: lib - cmd

hw/src/cmd/Makefile:

Alcatel-Lucent nmake Eclipse Plugin Examples Guide

September 2012 11

 include ../../src/global.mk

 :MAKE: *

hw/src/cmd/hw/Makefile:

 include ../../../src/global.mk

 hw :: hw.c a.c b.c -lhw

Complete source for this project is available in the provided template project.

hw/src/global.mk is a project level global Makefile that is included by all other Makefiles. It
contains project settings visible to all project Makefiles. Setting recurse_begin_message = gnu
configures nmake to output GNU make style recursion messages. This allows a CDT supplied error parser
to track the current directory in recursive builds. The default nmake supplied build definitions also set
recurse_begin_message = gnu on the default nmake command line as a convenience for existing
projects that might not have recurse_begin_message set appropriately in their own Makefiles. (The
recurse_begin_message = gnu feature was introduced in nmake alu3.9.) See Section 5.5, “Notes
on the Example Project” for an explanation of ProjDirPath. The :MAKE: assertion tells nmake to
recurse to the directories specified on the right hand side of the assertion. hw/src/cmd/hw/Makefile
is a leaf Makefile and specifies how to build command hw.

5.3. Creating the Example Project

nmake should be on your PATH before starting Eclipse. In addition, a C compiler called cc should be
on your PATH, alternatively point environment variable CC to your C compiler (for example, export
CC=/usr/bin/gcc). Once in Eclipse, turn off automatic project builds by selecting Project > Build
Automatically.

1. Select File > New > Project... > C/C++ > C Project.

2. Click Next.

3. Enter a project name, for example, hw. This will become the basename of various elements of the
generated example project, such as commands and libraries. Consequently, you probably want to avoid
spaces in the project name.

4. Select nmake Makefile Project - GCC > nmake Hello World C Project.

5. Select both toolchains nmake Makefile - Linux gcc/debug and nmake Makefile - Linux gcc/release,
or the equivalent for your platform (use shift-click to add a toolchain to existing selection.)

Alcatel-Lucent nmake Eclipse Plugin Examples Guide

September 2012 12

Figure 6. CDT project creation wizard—template project type and toolchain
selection.

6. Click Next.

7. Enter properties for the example project. These will appear in the generated project as appropriate, such
as in generated source file prologue comments.

Alcatel-Lucent nmake Eclipse Plugin Examples Guide

September 2012 13

Figure 7. CDT project creation wizard—template properties dialog.

8. Click Next, then Finish.

9. Click Yes if Eclipse offers to open the C/C++ perspective.

10.A new project using the supplied project name should appear in the Project Explorer.

5.4. Building the Example Project

5.4.1. Building within Eclipse

All of the following build procedures require the example project to be selected before initiating a build
operation. Select the project before each procedure by selecting its name in the Project Explorer.

• To build the project using the default debug configuration, select Project > Build Project. The entire
project should build with the build log appearing in the Console view.

• To clean the project, select Project > Clean... > Clean projects selected below. Select the example
project. Deselect Start a build immediately. Click OK.

• To build the project using the release build configuration, select Project > Build Configurations > Set
Active > nmake Makefile - Linux gcc/release (or the equivalent for your platform). Build the project
using Project > Build Project. The project should build using release compilation options.

5.4.2. Standalone Builds (Outside of Eclipse)

1. Start a console terminal and cd to the top level project directory hw.

Alcatel-Lucent nmake Eclipse Plugin Notes

September 2012 14

2. Set the ProjDirPath environment variable to the current directory. For example, if using ksh type
export ProjDirPath=$PWD.

3. Type nmake install to build and install the entire project. Each library and executable is built locally
and then installed in the project install directories lib and bin, with required include files going to
include.

4. Type nmake recurse clobber.install clobber to remove generated targets in each local development
directory and all installed targets.

5.5. Notes on the Example Project
• The template project is generic but can be customized for needs of specific development projects. For

example, the source header format is easily modified and the set of substitutable fields can be easily
changed.

• The current template avoids the use of VPATH (and therefore VROOT) in order to simplify initial project
configuration. For now, the value of the CDT variable ProjDirPath is passed down to nmake as a
way to find the project root. This may change in later releases.

6. Notes
• Eclipse CDT is not yet viewpath aware, so files down the viewpath will not show up in the project view.

For now, files down the viewpath may be brought into the top viewpath node for editing.

• The plugin does not currently provide an nmake Makefile editor, so certain constructs unique to nmake
Makefiles get error markers when editing using the existing CDT Makefile editor. These markers are
harmless.

7. Tips and Tricks

7.1. General Tips

7.1.1. Running Eclipse CDT

Eclipse CDT is designed to work with local C/C++ projects, where Eclipse is running on the machine
where the project is located. Furthermore, Eclipse is most responsive when run on the desktop. Since the
nmake CDT plugin is designed to support Linux/Unix® based projects, this would imply running a native
desktop Linux/Unix, or a virtualized Linux/Unix using a virtual machine monitor such as Virtual Box or
VMware® workstation running under hosts such as Windows® systems. We have had excellent results
with both of these approaches.

Another popular approach is to run Eclipse remotely over VNC.

Recently there have been a number of projects aimed at providing a remote development capability,
allowing the IDE to run locally with projects located remotely. There are several approaches, each with
its own set of tradeoffs. Use of nmake in remote development scenarios is currently under evaluation.

7.1.2. Project Location

For projects with an existing build node that already builds outside of Eclipse, we recommend using the
build node as project location when creating a CDT project. This will typically be a location in the file

Alcatel-Lucent nmake Eclipse Plugin What's New

September 2012 15

system outside of the Eclipse workspace. The workspace then in effect becomes just a container for project
meta-information.

7.1.3. Subdirectory Makes

An alternative to use of CDT make targets for subdirectory makes is to cd to the target directory and run
nmake directly from an nmake wrapper script run using the top level project build command.

7.2. Troubleshooting

7.2.1. Wrong Error Locations

Symptom: Build errors in stderr are correctly recognized (and colorized, etc.), but not always associated
to the correct file in the correct project subdirectory.

Tip: This occurs when messages in stderr are not bracketed within the correct recurse push/pop
messages in the CDT build console log. This is apparently due to stream buffering issues in the CDT build
console since a workaround is to change the build command from nmake ... to ksh -c 'nmake ... 2>&1'.
This forces stderr into the same output stream as stdout before it gets to CDT.

7.2.2. Unexpected Builds

Symptom: Builds are launched unexpectedly during project creation.

Tip: Turn off Project > Build Automatically before creating a new CDT C/C++ project. Otherwise,
Eclipse will kick off a build immediately upon project creation and after resource saves, probably not what
you want.

7.2.3. Install step fails in sample project

Symptom: In the supplied sample project, nmake is unable to locate or create the include install directory
during the install step.

Tip: Check that the ProjDirPath variable is set to the project root directory on the generated nmake
line, which should be visible in the Console view build log after a build. If ProjDirPath is not set, it
may mean that a resource in the sample project had not been selected prior to launching the build.

7.2.4. Unable to suppress build after a clean

Symptom: The Start a build immediately checkbox does not appear in the Project > Clean... dialog.

Tip: Verify that Project > Build Automatically has been turned off.

8. What's New
Version 1.0.0 released September, 2012. New features include an nmake error parser, auto-enablement of
the nmake error parser in the nmake builder definitions, and revamped and updated plugin documentation
available in multiple formats. Productization improvements include moving to the Eclipse standard
major.minor.service.qualifier plugin version numbering scheme for improved interoperability with the
Eclipse p2 provisioning system, plugin signing for improved verification during plugin installation,
and updated branding elements. Under the hood, the plugin release builds move to a fully automated,
“headless”, build process against a controlled target platform, leading to higher quality and repeatable

Alcatel-Lucent nmake Eclipse Plugin Legal

September 2012 16

product. The plugin supports the Eclipse 4.2 (Juno)/CDT 8.1 release and has been tested on Linux and
Solaris.

Version 0.5.0 released July, 2009. Update dependencies allowing install with Eclipse 3.4+. Workaround
CDT 6.0 bug which caused nmake project templates to not display. Eclipse variable ${project_loc}
was not getting set leading to failure to build nmake template projects. Changed to use CDT variable
${ProjDirPath} instead. Update default version strings in project template definition files. Verify
operation with Eclipse 3.5/CDT 6.0.

Version 0.4.0 released March, 2008. Introduce build definition toolchain support for Solaris. Introduce
support for C++, including a new C++ project template. Globally change alu to alcatel_lucent
in all identifiers and names. Pull out key build commands into property file for easier maintenance/
modification. Add an empty project template for the nmake project type. Update help book documentation.
Miscellaneous cleanups.

Version 0.3.2 released December, 2007. Includes build definitions for gcc/Linux, help documentation,
and example project packaged as a CDT template.

9. Legal
Copyright© 2008, 2009, 2012 Alcatel-Lucent. All Rights Reserved.

For more information regarding Alcatel-Lucent nmake Product Builder, including current release
information, downloads and technical support, visit our web site at http://www.bell-labs.com/project/
nmake/.

Eclipse is a trademark of Eclipse Foundation, Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other
jurisdictions. All other marks and names mentioned herein may be trademarks of their respective
companies.
UNIX is a registered trademark of The Open Group
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

http://www.bell-labs.com/project/nmake/
http://www.bell-labs.com/project/nmake/

	Alcatel-Lucent nmake Eclipse Plugin
	Table of Contents
	1. Overview
	1.1. Alcatel-Lucent nmake Eclipse CDT plugin
	1.2. About This Document

	2. Getting Started
	2.1. Installing Eclipse
	2.2. Installing the Plugin

	3. Tasks
	3.1. Project Build Setup
	3.2. Eclipse Project Setup
	3.3. Eclipse Project Builds
	3.4. Custom Make targets

	4. Reference
	4.1. nmake Build Definitions
	4.2. Error Parsers

	5. Examples Guide
	5.1. Overview
	5.2. Description of Example
	5.3. Creating the Example Project
	5.4. Building the Example Project
	5.4.1. Building within Eclipse
	5.4.2. Standalone Builds (Outside of Eclipse)

	5.5. Notes on the Example Project

	6. Notes
	7. Tips and Tricks
	7.1. General Tips
	7.1.1. Running Eclipse CDT
	7.1.2. Project Location
	7.1.3. Subdirectory Makes

	7.2. Troubleshooting
	7.2.1. Wrong Error Locations
	7.2.2. Unexpected Builds
	7.2.3. Install step fails in sample project
	7.2.4. Unable to suppress build after a clean

	8. What's New
	9. Legal

